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Abstract 
Understanding the culture of operational networking can help to 
illuminate the question of why QoS has floundered.   Network 
administrators have a well-founded aversion to complexity, in 
part because they experience failures attributable to design 
complexity  on a regular basis.  I argue that IP multicast defines a 
functional limit-case for deployable complexity in today’s 
Internet.  That limit is relevant to the deployment of QoS, since 
many flavors of QoS entail equal or greater complexity. 
 
The notion of a functional constraint on complexity draws 
attention to the economic, historical, and institutional forces 
which influence the fate of networking technologies.  QoS will 
not be compelling for most network administrators until its design 
takes account of these forces. 
 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – packet-switching networks 

C.2.3 [Computer-Communication Networks]: Network 
Operations – network management   

C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks - Internet 

General Terms 
Design, Economics, Reliability, Human Factors. 

Keywords 
QoS, complexity, multicast, operational networking. 

1. Introduction: Failure to Thrive 
When a young child who ought to be gaining weight inexplicably 
does not, pediatricians sometimes resort to a vague diagnosis, the 
"failure to thrive."   This phrase captures something we take for 
granted about childhood:  active thriving is the norm, and 
anything short is cause for alarm.    
 
Quality of Service (which I’ll define as the effort to engineer an 
end-to-end alternative to best-effort packet delivery on the 
Internet)1 has suffered for years from an analogous failure to 
thrive.  But should that be cause for alarm?  It is not obvious, after 
all, that networking protocols are like children – that they thrive 
in the normal course of events.  On the contrary, given the 
abundance of protocols which have been standardized and the 
much smaller number in common use, one might reasonably 
conclude that withering away, rather than thriving, is the normal 
fate of the average protocol.  In the economy of networking 
standards, failure is the norm, and only "failure to fail" is 
exceptional.   
 
Seen in this light, the modest success of QoS is not surprising.  
And yet the failure of QoS to thrive should interest anyone who 
creates, analyzes, or implements networking standards.  In the 
first place, that failure is significant because of the professional 
stature of the architects of QoS, and the sheer volume of their 
work:  all told, the literature includes many dozens of articles, 
Internet Drafts, RFCs, dissertations, and books.  It is also 
significant  because the history of QoS sheds light on a structural 
rift between networking operations and protocol design, the 
implications of which extend well beyond QoS.    
 
In this paper, I pursue the second point.  I argue that 
understanding something about the culture of operational 
networking – about the daily experience of network engineers 
who manage routers and switches – can illuminate the question of 
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1For insight into the difficulty of defining QoS, see [14], 
especially section 4.   I return to the subject of definition later in 
this paper.   

 



why QoS has floundered.  By way of disclaimer, I acknowledge 
that my professional experience is wholly operational.  I work in a 
scientific research institution where the local-area network 
contains about 80 subnets and 10,000 connected devices.  My 
background undoubtedly colors the observations I make and the 
conclusions I advance; in particular, it explains why I have little 
to say about the lukewarm reception given QoS by Internet 
Service Providers.2 
 
 

2. Complexity and Failure 
The most important operational objection to QoS is excessive 
complexity.  Why complexity per se should be objectionable has 
been the subject of several recent papers  [6, 7, 15, 20].  The 
authors of RFC 3439 have argued, for example, that the 
complexity of a given architecture is proportional to the number 
of components it contains, where "component" may be "a protocol 
path, a software path, or a physical path."  They further observe 
that the scalability of a highly-complex network such as the 
Internet is impeded by two properties – amplification and 
coupling – both associated with nonlinear systems theory.  The 
Amplification Principle states that small, local fluctuations can 
produce large-scale effects, while the Coupling Principle 
describes the unexpected interactions sometimes observed 
between seemingly-isolated features and components.  Both 
properties have the potential to generate failures.  Although the 
Internet is "resilient to designed-for uncertainties" [20], it is also 
prone, as a result of its complexity, to experience "catastrophic 
events."  To cite a memorable phrase, it is "robust, yet fragile" 
[20].   
 
The tone of this work is suitably cautionary, but it actually 
underestimates the full impact of design complexity upon the 
operational stability of networks, because it tacitly assumes that 
complex protocols function as they were designed to function.   
The authors conceive of frailty, in other words, as the unintended 
consequence of otherwise well-behaved systems interacting.  
 
Yet I am certain that most people who administer switches and 
routers on a daily basis would attribute the frailty they encounter 
in networks – and they encounter plenty – to poorly-implemented 
software, rather than unexpected non-linearity.3  It is the recurring 
experience of network engineers that complex protocols 
(especially protocols for which the constituency is small, such as 

MSDP) are prone to break.  Those of us who work with routers 
encounter serious bugs on a regular basis; we report these bugs to 
vendors; we upgrade code; and the cycle repeats.   As a result, we  
eventually come to presume that complex protocols will 
destabilize our  networks: we anticipate failure.  Outsiders may 
misinterpret that expectation as simple pessimism, but in fact it is  
a form of hard-won working knowledge.    

                                                                 
2On the other hand, I believe that story is relatively well-
documented compared to the corresponding resistance in the 
enterprise.  See [5], for example. 
3Bug-related failures could be seen as instances of the 
Amplification Principle, since the input (eg, a particular bit 
pattern in a packet) is trivial compared to the outcome (a router 
crash).  My point, though,  is that current discussions of 
complexity in networks don’t conceive of such failures as 
systemic, and therefore as important constraints on deployable 
complexity.  On the insufficiency of current "mental models of 
the Internet’s important properties," see [12]. 

 
It is difficult to sympathize with the operational mindset I have 
described without living through dozens of debugging sessions.  
As a poor substitute, I want to describe the flavor of several 
failures we have encountered at LBNL recently.  They fall 
roughly into two categories.  On the one hand, there are isolated 
problems which seem to strike randomly; on the other hand, there 
are problems which fall into recurring patterns.  
 
Initially, the following incident seemed to fit squarely within the 
first category.  Abruptly one day, all the subnets served by Router 
A lost connectivity with destinations outside of LBNL: 
 

 
 

Figure 1: simplified topology  
 
Soon afterwards, subnets on Routers B lost connectivity as well, 
followed by subnets on Router C.  All hosts internal to LBNL 
could communicate with each other, though.  In the process of 
debugging, we looked carefully at the BGP state on the border 
Router Z, but there were no signs of trouble.   The symptoms 
strongly suggested a routing problem, but all routing tables were   
normal.  Eventually we discovered the cause of the failure.  As 
unlikely as it seems, the ARP process on Router Z had broken in 
such a way that the router failed to answer address resolution 
requests for its "inside" interface address.  When the relevant 
ARP cache entries on Routers A, B and C timed out, each lost the 
ability to forward packets to its next-hop address for external 
destinations.4    
                                                                 

4OSPF state was unaffected by the failure, since the mappings 
between layer-3 and layer-2 multicast addresses are static. In 
this narrow sense, IP multicast is more failure-resistant than IP 
unicast; but see below. 



 
For some time, we attributed this failure to a buggy 
implementation of the Address Resolution Protocol.  When the 
same symptoms returned two months later, though, we were able 
to pinpoint the root cause of the ARP failure, which turned out to 
be a route processor crash triggered by a bug in the code which 
handles multicast packets.  At that point, the failure took on a 
different character entirely; it fit into one of the recurring patterns 
I mentioned above.  In the preceding twelve months, we had 
experienced a series of bug-related multicast failures so consistent 
it could almost be budgeted for in terms of FTE support.  We had 
diagnosed at least 10 serious bugs on 5 hardware platforms, and 
the time required to resolve these issues was on the order of 
engineer-weeks.     
 
These bugs were not mere annoyances.  On the contrary, they 
affected router stability.  We saw the following symptoms, and 
many more: 

• Router repeatedly reboots when it encounters multicast 
traffic  

• Router reboots when attempting to establish MSDP 
peering 

• Normal PIM packets cause a memory leak  
• MSDP router fails to advertise active local sources 
• Switch intermittently drops all multicast packets 
 

Such incidents linger stubbornly in the memory of those who 
debug them.  They contribute to an expectation that every 
networking protocol is encumbered with unknown failure modes.  
Eventually, we concluded that implementing IP multicast required 
a substantial commitment of engineering resources, and that it 
would inevitably impair the stability of unicast routing due to the 
need for frequent OS upgrades and intrusive testing.  Many  
enterprises do not have the mandate, or see a justification, for 
making this commitment.5 
 
I believe our experience with IP multicast is directly relevant to 
the history of QoS, because IP multicast defines a limit-case for 
deployable complexity in today’s Internet.  It is important to 
stress that the limit is functional.  Multicast is not intrinsically 
"too complex" to be implemented reliably, in other words – but 
that is not the issue.  The issue is whether multicast can be 
implemented reliably given the extra-technological factors that 
constrain the success of actual deployments.  These factors are 
numerous, and they include: 

• inadequate quality assurance by vendors  
• lack of a critical customer mass and a limited market 
• finite staff time for troubleshooting 
• scarcity of debugging tools 
• limited skill-set of operational engineers   
• lack of trust between neighboring domains 

 
If IP multicast represents a limit-case for deployable complexity, 
the implications for QoS are serious.  Intuitively, it seems clear 

                                                                 

                                                                

5For more on this point, see [10].   

that the Integrated Services architecture – with its requirement 
that routers (even core routers) keep end-to-end per-flow state, 
and that reservation set-up "be fundamentally designed for a 
multicast environment" [4] – presupposes a level of complexity 
significantly higher than that of inter-domain multicast routing.  
The vexing challenges of multicast apply to Integrated Services, 
but there is an additional requirement to manage (and inevitably 
debug)  packet scheduling, admission control, classification, and 
reservation setup.     
 
The relative complexity of the Differentiated Services 
architecture is harder to assess, largely because of its greater 
flexibility.  Diffserv aims to achieve scalability by "aggregating 
traffic classification state" through "IP-layer packet marking" [3], 
and it can be implemented on a very modest scale, perhaps "at a 
single bottleneck" [8].  Such minimalism is a far cry from the 
Grand Unified style of QoS exemplified by Integrated Services, 
and it also presents fewer operational risks.6  However, it is 
doubtful that minimalist Diffserv can provide the rich service 
model envisioned by most QoS advocates and architects.  As 
Geoff Huston points out, the simpler architecture is still 
incomplete in many respects, especially in regard to "end-to-end 
signaling facilities" for functions such as resource availability  
discovery and service requests [14;  also see 2 {section 4.2.7}].  
Diffserv signaling protocols – which include, in one proposal, a 
network of "brokers" for end-to-end bandwidth allocation [16] – 
add significant complexity to the bare, minimalist model, as does 
the prospect of enlarging the Diffserv domain from a single router 
to a densely-interconnected set of network clouds under different 
administrative control.   
 
My aim is not to make a definitive judgment about which of these 
architectures is more complex, but to suggest that forces currently 
impeding the scalability of IP multicast routing (including a 
complicated control plane, a shortage of knowledgeable 
operational staff, and a scarcity of debugging tools ) also impede 
the deployment of QoS.  To be sure, recent QoS architectures are 
simpler [9, 18], but this reduction in complexity may ultimately 
be compromised by the necessity to make QoS secure against 
denial-of-service attacks, as well as resource "theft"  [1, 11, 14]. 
 
The notion of a functional constraint on complexity tends to draw 
attention to the economic, historical, and institutional forces that 
influence the fate of networking technologies.  These forces – 
which include the cost of router interfaces, the market for wide-
area connectivity, the rate of broadband penetration, the demand 
for real-time applications, and the average skill-set of network 
administrators – receive scant attention in the literature on QoS.  I 
think it’s fair to say that protocol designers have not been very 
attentive to them generally.  This neglect is particularly ironic, 
because the professional life of anyone affiliated  with computer 
networking in the past decade has been buffeted by economic and 

 
6Implementing Diffserv on a limited scale, though, does carry the 
danger of  relocating the offending bottleneck to another link 
immediately outside the QoS domain [5].   
 



historical surprises: the explosive growth of HTTP traffic, for 
instance, or the rise and fall of the dot-com bubble.   
 
Attempting to architect QoS without taking into account its 
economic and institutional context is roughly analogous to 
designing a city without reference to local culture, climate or 
geography.  In either case, the likely result is a conspicuous 
failure to thrive.  One might argue that architectural design work 
should remain untainted by such concerns, and to a certain extent 
this view is appropriate and salutary.  But carried to an extreme, it 
can lead to the standardization of overly-complex technologies 
with little chance of deployment in working networks.   
 
What would it mean to think about QoS in relation to the forces I 
have described?  Again, let’s consider the culture of operational 
networking, which eschews complexity and anticipates failure.  
When evaluating complex services, network engineers ask 
practical questions, and a full understanding of the fate of QoS 
requires us to take these questions seriously: 
1) What does my network (which is currently stable and  
comfortably-provisioned) have to gain from enabling this 
technology? 
2) Can it be incrementally deployed? 
3) Are there good debugging tools?  
4) Can I debug it without impacting best-effort service? 
5) While debugging, do I need the active cooperation of engineers 
from other domains?  
6) Are the benefits sufficiently compelling to compensate for the 
potential pain?  
7) When it breaks, will I be blamed? 
8) Am I likely to be caught in the middle of disputes regarding 
whose packets receive better-than-best-effort service? 
9) Will I be asked to investigate very transient, vaguely-defined 
symptoms which users attribute to the failure of QoS? 
10) Will this project become a black hole for my time, or that of 
my staff? 
 
QoS will not become compelling for the majority of network 
administrators until it can offer persuasive answers to these 
questions.  And it will not develop persuasive answers to these 
questions until its design addresses the operational and economic 
forces likely to impede its deployment.  One such force, for 
example, is continuing downward pressure on the price of 
bandwidth, in local and wide-area networks alike.   
 

3. Throwing Bandwidth 
The primary operational response to the problems which QoS 
aims to alleviate –  including latency, jitter and packet loss – has 
been to provision links with sufficient headroom that congestion 
becomes unlikely.  This practice is sometimes characterized as 
"throwing bandwidth at the problem," but the formulation is 
misleading, because it implies that the strategy is thoughtless.  In 
fact, the tactic of "throwing bandwidth" has more merit and more 

staying power than advocates of QoS have been willing to 
acknowledge. 
 
At LBNL, we adhere to a "10% rule" for provisioning.  When the 
utilization of a router or switch interface begins to exceed 10% of 
the link speed over a 30-minute average, we upgrade the link.  
This rule of thumb is, in part, an outgrowth of the observation that 
our monitoring systems do not tell us very much about transient, 
peak utilization:  we know by comparing actual packet traces with 
MRTG data that even 30-second load averages underestimate the 
magnitude of bursts.    
 
The "10% rule" is simple, and it works well in practice.  Whether 
it is economical depends on the market for Ethernet interfaces at 
the moment the 10% boundary is crossed: are we forced to 
become early adopters, or can we take advantage of commodity 
pricing?   In practice, the 10% rule generally has not committed 
us to the bleeding edge.  For example, we do not anticipate 
needing to deploy 10 Gigabit Ethernet in production networks for 
at least nine months, and interface prices are rapidly falling.  
When all costs are carefully accounted for, we believe that 
"throwing bandwidth at the problem" is the cheapest antidote to 
congestion in our network, and that "throwing protocols at the 
problem" will  compromise stability. 7 
 
Recently, network researchers have begun to explore how to 
achieve some of the tantalizing benefits promised by QoS through 
strategic provisioning alone.  In other words, they have begun to 
ask a more formal version of the question "how much bandwidth 
should we throw at the problem?"  [13, 19].  At very high link 
speeds, that number turns out to be surprisingly low – on the order 
of 15% above average utilization, by one account [13].  
Furthermore, service providers are reporting success in adhering 
to a similar philosophy in the Internet core [1, 15]. This approach 
may have been inspired by the dawning realization that the rate of 
Internet traffic growth has been overestimated in recent years 
[17]. Whether it can succeed in the long run depends on actual 
rates of traffic growth, and on rates of decrease in the cost of 
transmission capacity.  Once again, economic and market forces 
wholly unconnected with the architecture of QoS are central to its 
operational fate.     
 
The tactic described above – ie, provisioning conservatively to 
accommodate bursts – has sometimes received only perfunctory 
treatment by the architects of QoS:  

 
"Bandwidth will be Infinite" 
 
The incredibly large carrying capacity of 
an optical fiber leads some to conclude 
that in the future bandwidth will be so 
abundant, ubiquitous, and cheap that there 
will be no communication delays other than 
the speed of light, and therefore there 

                                                                 
7Natrually, ISPs face different economic constraints than 
enterprises when provisioning link capacity.  For a brief 
overview of current norms in ISP capacity engineering, see [1]. 



will be no need to reserve resources. 
However, we believe that this will be 
impossible in the short  term and unlikely 
in the medium term.  While raw bandwidth 
may seem inexpensive, bandwidth provided 
as a network service is not likely to 
become so cheap that wasting it will be 
the most cost-effective design principle.  
Even if low-cost bandwidth does eventually 
become commonly available, we do not 
accept that it will be available 
"everywhere" in the Internet.  Unless we 
provide for the possibility of dealing 
with congested links, then real-time 
services will simply be precluded in those 
cases.  We find that restriction 
unacceptable. [4] 

 
This passage from RFC 1633 begins by caricaturing the argument 
it wants to refute.  In fact, no one believes that bandwidth will be 
infinite; but at any given time, it may be sufficiently plentiful and 
inexpensive that it creates an attractive alternative to QoS.   The 
authors assert that bandwidth "is not likely to become so cheap 
that wasting it will be the most cost-effective design principle" – 
but this claim cannot be persuasive in the absence of data about 
actual prices and predicted demand.  In addition, the authors 
appear to assume that unused bandwidth is "wasted" in the same 
sense that uneaten food is wasted, but of course that is not the 
case.  As Meyer and Bush have observed, in "modern Internet 
backbones the unused capacity is actually protection capacity" for 
various low-probability events (fiber cuts, extended power 
outages, equipment failures) [7; also see 1]. 
 
The final sentences of the paragraph are quite revealing.  It is true 
that some links in the Internet will always be congested, but 
asserting that "we" need to "provide for the possibility of dealing 
with congested links" in such cases undermines the justification 
for a complex, end-to-end QoS architecture, as described in the 
body of the RFC.  In other words, defining Quality of Service as a 
technique for coping with the possibility of isolated congestion 
reduces the scope of the concept substantially.   We are left with 
something resembling minimalist Diffserv, which falls short of 
providing the rich service model originally envisioned for QoS.   
 

4. Conclusion 
Remarkable intelligence and energy have been lavished upon the 
architectural design of QoS, but much less attention has been 
devoted to careful analysis of the relevant problem space from an 
operational or economic perspective.  This discrepancy is 
symptomatic of a broken (or attenuated) feedback loop between 
network operations and research.  Ideally, there would be constant 
exchange of information between these two domains, but in 
practice they tend to be mutually insular.  The number of people 
who are comfortable in both worlds is relatively small, as is the 
number of institutions designed to bridge the gulf.   
 
This rift has harmed the process of protocol design by shielding it 
from information about the daily experience of failure in large-
scale networks – information that is crucially important in trying 
to estimate what I have called the functional limits of deployable 

complexity.  Unless the architecture of QoS is calibrated with 
these limits in mind, it will almost certainly continue to suffer 
from a chronic failure to thrive.   
 

5. Acknowledgements 
For generous feedback on earlier drafts of this paper, I am 
grateful to Mike Bennett, Jim Leighton, Sally Floyd, and Ion 
Stoica, as well as the anonymous reviewers.   I owe a special debt 
to Ted Sopher, a steadfast advocate of design simplicity at LBNL, 
and the origin of many ideas and principles I have articulated 
here.   
 

6. References 
 
[1] R. Atkinson.  An ISP Reality Check.  Presentation to IEprep, 
IETF 55, Nov 2002.  http://www.ietf.cnri.reston.va.us/ 
proceedings/02nov/219.htm#slides. 
 
[2] G. Armitage.  Quality of Service in IP Networks.  Macmillan 
Technical Publishing, Indianapolis IN, 2000.   
 
[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. 
Weiss.  RFC 2475, An Architecture for Differentiated Services.   
 
[4] R. Braden, D. Clark, and S. Shenker.  RFC 1633, Integrated 
Services in the Internet Architecture: an Overview.   
 
[5] J. Burrescia and J. Leighton.  DOE NGI Testbed: Project 
Close Out Report. http://www.es.net/hypertext/welcome/ pr/ 
DOE_NGI_TESTBED_REPORT3_Dec01.pdf 
 
[6] R. Bush.  Complexity – the Internet and the Telco 
Philosophies, a Somewhat Heretical View.  NANOG 29, Oct 
2002.  http://www.psg.com/~randy/021028.nanog-complex.pdf 
 
[7] R. Bush and D. Meyer.  RFC 3439, Some Internet 
Architectural Guidelines and Philosophy.   
 
[8] B. Carpenter and K. Nichols.  Differentiated Services in the 
Internet.  IBM Research Report. http://domino.watson.ibm.com/ 
library/Cyberdig.nsf/398c93678b87a12d8525656200797aca/8efe
46a5de7e3b8f85256b5e003c5883?OpenDocument 
 
[9] N. Christin and J. Liebeherr.  A QoS Architecture for 
Quantitative Service Differentiation.  IEEE Communications, 
41(6), June 2003. 
 
[10] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. 
Balensiefen. Deployment Issues for the IP Multicast Service and 
Architecture. IEEE Network magazine special issue on 



Multicasting, 14(1):78-88, January/February 2000.  
ftp://ftp.sprintlabs.com/diot/xcast-deployment.zip 
 
[11] S. Floyd and R. Atkinson, eds.  Concerns with Network 
Research Funding.  Presentation to the IETF 56 plenary.  
http://www.ietf.org/proceedings/03mar/slides/plenary-
19/index.html 
 
[12] S. Floyd and E. Kohler.  Internet Research Needs Better 
Models.  First Workshop on Hop Topics in Networks.  
http://www.icir.org/ models/hotnetsFinal.pdf 
 
[13] C. Fraleigh, F. Tobagi, and C. Diot.  Provisioning IP 
Backbone Networks to Support Latency Sensitive Traffic.    
http://ipmon.sprintlabs.com/pubs_trs/pubs/cdiot/ 
infocom03_provisionbb.pdf 
 
[14] G. Huston. RFC 2990,  Next Steps for the IP QoS 
Architecture. 
 
[15] D. Meyer.  Some Thoughts on QoS and Backbone Networks.  
Presentation to IEprep, IETF 55, Nov 2002.   
http://www.ietf.org/proceedings/02nov/slides/ieprep-4.pdf. 
 
[16] K. Nichols, V. Jacobson, and L. Zhang.  RFC 2638, A Two-
bit Differentiated Services Architecture for the Internet. 

 
[17] A. Odlyzko.  Internet Growth: Myth and Reality, Use and 
Abuse.  http://www.dtc.umn.edu/~odlyzko/doc/ 
internet.growth.myth.pdf 
 
[18] I. Stoica.  Stateless Core: A Scalable Approach for Quality of 
Service in the Internet.  Ph.D. Dissertation, Carnegie Mellon 
University, Dec. 2000.   
 
[19] T. Telkamp.  Traffic Characteristics and Network Planning.  
NANOG 26, Oct 2002.  http://www.nanog.org/mtg-
0210/ppt/telkamp.pdf 
 
[20] W. Willinger and J. Doyle.  Robustness and the Internet: 
Design and Evolution. http://netlab.caltech.edu/pub/papers/ 
part1_vers4.pdf 
 
[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.  
RSVP: A New Resource ReSerVation Protocol.  IEEE Network, 
vol. 7, Sept 1993.   
 
 
 
 
 

 
 


	Introduction: Failure to Thrive
	Complexity and Failure
	Throwing Bandwidth
	Conclusion
	Acknowledgements
	References

